
FULL PAPER

Diffusion in Realistic Biophysical Systems Can Lead to
Aliasing Effects in Diffusion Spectrum Imaging
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Purpose: Diffusion spectrum imaging (DSI) is an imaging tech-

nique that has been successfully applied to resolve white mat-

ter crossings in the human brain. However, its accuracy in

complex microstructure environments has not been well

characterized.
Theory and Methods: Here we have simulated different tissue

configurations, sampling schemes, and processing steps to

evaluate DSI performances’ under realistic biophysical condi-

tions. A novel approach to compute the orientation distribution

function (ODF) has also been developed to include biophysical

constraints, namely integration ranges compatible with axial

fiber diffusivities.

Results: Performed simulations identified several DSI configu-

rations that consistently show aliasing artifacts caused by fast

diffusion components for both isotropic diffusion and fiber

configurations. The proposed method for ODF computation

showed some improvement in reducing such artifacts and

improving the ability to resolve crossings, while keeping the

quantitative nature of the ODF.

Conclusion: In this study, we identified an important limitation

of current DSI implementations, specifically the presence of

aliasing due to fast diffusion components like those from path-

ological tissues, which are not well characterized, and can

lead to artifactual fiber reconstructions. To minimize this issue,

a new way of computing the ODF was introduced, which

removes most of these artifacts and offers improved angular

resolution. Magn Reson Med 76:1837–1847, 2016. VC 2015
The Authors Magnetic Resonance in Medicine published
by Wiley Periodicals, Inc. on behalf of International Society
for Magnetic Resonance in Medicine. This is an open
access article under the terms of the Creative Commons

Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is
properly cited.
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INTRODUCTION

Diffusion spectrum imaging (DSI) is a diffusion imaging
technique that has been used to explore microstructure
and biophysics of living biological systems (1). Based on
the q-space formalism originally introduced by Callaghan
et al (2,3), DSI exploits the direct Fourier relationship
between the space of the average spectrum of spin dis-
placements and the MR diffusion-weighted signal. Suc-
cinctly, it is possible to obtain a reconstruction of the
ensemble average propagator (EAP), by applying the three-
dimensional (3D) Fourier transform to the diffusion-
weighted signal acquired on a uniform 3D Cartesian grid
that covers multiple regularly spaced diffusion encoding
directions and diffusion weightings (4).

The diffusion propagator provides unique information
about diffusion, allowing a more accurate characterization
of the displacement and restriction of water molecules
than is possible with traditional diffusion tensor imaging
(5). Specifically, it allows measures to be extracted such as
return to origin probability (RTO), which reflects the level
of restriction of the diffusion environment; mean squared
displacement (MSD), which is the average displacement
experienced by water molecules in the measured sample;
and kurtosis (K), which gives information on how the
probability of water molecules displacement deviates
from a Gaussian distribution. These indices aid explora-
tion of microstructure both in health and in pathological
conditions such as multiple sclerosis (MS) and stroke
(6–8). Moreover, DSI and other model independent meth-
ods capable of retrieving the diffusion propagator do not
make any assumptions about the underlying biophysical
model, making it possible to explore biological domains
which are not entirely defined and in which the use of an
a priori diffusion model may lead to errors in the interpre-
tation of the underlying biophysics (9).

Despite its potential for providing useful quantitative
measures, DSI is a very time consuming technique, requiring
sampling schemes often incompatible with a clinical setting
(10). Also, to collect measurements at very high q-values,
stronger and longer diffusion gradients are required than for
the simpler diffusion tensor imaging (DTI) based approaches,
leading to longer echo times and consequently lower signal-
to-noise ratio (SNR) of the final data (11). To mitigate some of
these issues, accelerated methods that explore the intrinsic
sparsity of the diffusion propagator, such as compressed
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sensing and dictionary based-techniques, have been pro-
posed (12,13).

But even with the advent of these accelerated techni-
ques, DSI can only use a very limited number of points in
each q-axis (typically 5, 7, or 11 measurements), providing
an incomplete description of the true diffusion spectrum.
Zero-padding is often applied to improve the resolution of
the propagator though no additional information is added
(14). The addition of Hanning windowing to the signal to
avoid q-space truncation artifacts also leads to over
smooth profiles both of the EAP and the derived orienta-
tion distribution function (ODF).

The ODF is probably the most important output from
methods like DSI because it can inform us about the
underlying fiber orientation and allow tractography
reconstructions in regions of complex white matter
(WM) organization (15). An ODF is obtained by radial
integration of the propagator, by summing the probability
of water molecules displacement along a specific direc-
tion. It is extensively used in tractography, where the
accurate reconstruction of 3D WM pathways rely on the
ODF’s ability to resolve multiple fiber orientations
within voxels. Until now, however, most of the optimiza-
tions for DSI have been tailored specifically for improved
angular resolution of the ODF (16). In particular, these
studies have focused on using simple fiber models,
while more complex tissue configurations and proper
exploration of the true underlying propagator have been
neglected (17).

This can be critical in particular in clinical or clinical
research settings where the presence of pathology may
change the diffusion properties of the tissue under inves-
tigation. For example, the presence of edema may affect
the measures extracted from DSI, and change the nature
of the real diffusion propagator, leading to inaccurate
quantifications and artifactual fiber reconstructions. In
the current study, therefore, we have investigated how
biologically plausible changes are reflected in the diffu-
sion propagator and ODFs, as well as the influence of
standard processing DSI steps on the final reconstruc-
tion. As a result of our observations, we also propose a
new method for ODF computation, optimized for a bio-
physically meaningful range of diffusions within WM.
This method is applicable to other model independent
techniques and overcomes some of the problems we
encounter with traditional DSI processing, namely the
process of subtracting the minimum value for all ODF
directions and normalizing them by the maximum ampli-
tude (i.e., min–max normalization), which discards the
quantitative nature of the ODF.

THEORY

DSI Pipeline

In contrast to the simple DTI formalism, q-space imaging
and diffusion propagator formalisms require collecting a
large number of points on a regular Cartesian grid, where
each point represents a specific direction and diffusion
weighting. For single pulsed gradient spin echo (PGSE)
sequences, the sensitivity of the measurement to diffu-
sion, and, therefore, the amount of dephasing that the
signal undergoes depends on the applied q-space vector.

This quantity is defined by q ¼ 1
2p

gdG, where g is the

gyromagnetic ratio for the hydrogen nucleus, d is the

duration and G the amplitude of the applied gradients

with gradient rise times assumed to be infinitesimal (18).

With this formulation, a Fourier relationship can be

identified between the measured echo amplitude and the

probability of displacement of any spin occurring over

the time between application of both gradients, or the

diffusion time (D):

PðR;DÞ ¼
Z

Eðq;DÞe�i2pq:R dR [1]

where E refers to the amplitude of the echo divided by

the measured signal without diffusion weighting, R con-

sists on the displacement of any spin during the experi-

ment and PðR;DÞ denotes the average propagator, which

indicates the probability of such displacements to occur.

However, in real DSI experiments, the applied diffusion

gradients are of finite duration, and calculating the

inverse Fourier transform of the MR signal (Eq. [1]) only

leads to an approximate representation of the true aver-

age diffusion propagator where the actual molecular spin

displacement is underestimated (19). Nevertheless, being

able to obtain an estimate of the underlying propagator,

or the EAP (4,14,20), within each brain voxel still makes

DSI and q-space imaging a very powerful technique to

probe the complex microstructural organization in bio-

logical tissues.
As shown in Figure 1, because the propagator resolu-

tion (Dr) is inversely proportional to the total q-space

sampling ð2qmaxÞ�1, if very large amplitude gradients

(high q-values) are used, a finer sampling of the dis-

placement space can be achieved (Figure 1, middle

panel) (21,22). At the same time, the field of view of the

displacement space that can be explored for a specific

type of acquisition is determined by the maximum

displacement:

Rmax ¼ Dr:
ðN � 1Þ

2
: [2]

where N is the number of samples along each axis of our

grid. Because of this, it follows that acquisition schemes

must be designed to meet the classical Nyquist criteria

for data sampling. In particular, the sampling interval Dq
(spacing in q between adjacent measurements on the

grid) must be sufficient to retrieve the maximum fre-

quency present in the signal (14). Therefore, for a spe-

cific acquisition, Dq must be set to at least twice the

maximum displacement Rmax to avoid aliasing.
DSI acquisitions consist on the application of diffusion

encoding values within a sphere with radius defined by

the maximum q-value used (16,23,24), which has been

truncated from a full Cartesian grid. Such truncation

gives a speed advantage over full sampling on a rectan-

gular grid, as the corners of q-space are not acquired,

with no significant impact on the estimation of fiber

directions following calculation of the ODF (25). Never-

theless, DSI acquisitions remain challenging as the pres-

ence of multiple b-values and use of high amplitude

1838 Lacerda et al.



gradients makes it difficult also to run traditional eddy
current corrections and at the same time to apply cardiac
or peripheral gating acquisitions due to scan time limita-
tions. In addition to acquisition choices, the processing
of the diffusion-weighted data will also affect the final
reconstruction of the propagator and the ODF. In particu-
lar, it is common to apply zero-padding to the acquired
q-space data before Fourier transformation to interpolate
the diffusion propagator (26,27). Also, to minimize dis-
continuities and reduce truncation artifacts, zero-
padding is often performed in conjunction with some
degree of filtering of the raw data, with Hanning win-
dowing being mostly commonly used (28–30). However,
this type of filtering may also introduce excessive
smoothing in the EAP profile (31). Finally, the ODF is
obtained by radial integration of the propagator (32),
according to:

ODFðuÞ ¼
Zrmax

rmin

PðruÞr2dr: [3]

The computed ODF is usually a discrete implementa-
tion of its analytic definition, and results from radial
integration along several directions. The ranges for
ODF integration must also be considered; to date, inte-
gration ranges have typically been defined in a largely
empirical manner, with rmin and rmax set to a percentage
of the full integration range, with the noise being the
main factor considered (14,33) and no real physical
interpretation. Also, to enhance the angular information
of the ODF profile, a min–max normalization is usually
performed with the minimum ODF value subtracted
from all ODF directions and all amplitudes normalized
to the maximum ODF value. However, this operation
results in an important loss of quantitative information
as each ODF profile is rescaled to the same maximum
amplitude and, therefore, ODF amplitudes cannot be
compared across brain regions or subjects to investi-
gate, e.g., changes in diffusivity along different fiber
directions (34).

METHODS

Numerical Simulations

The main purpose of our first investigation was to quan-
tify how stable DSI reconstructions are, when changing
the nature of the biophysical system involved. The first
set of experiments consisted of numerical simulations of
two simple biophysical systems, namely an isotropic
medium and a single fiber configuration, both consistent
with a model of Gaussian diffusion. For both simula-
tions, data were generated with a fix diffusion gradient
separation (D¼55 ms) and three different realistic acqui-
sition schemes: a “state of the art” (connectome-like
scanner) DSI acquisition defined over a 15� 15� 15 Car-
tesian grid with a diffusion encoding obtained by varying
the gradient amplitude in equal steps from 0 to a maxi-
mum of 300 mT.m�1 (yielding a max q-value of
102.19 mm�1 or maximum b-value of 21000 s.mm�2) and
a d¼ 8 ms; a “high resolution” DSI acquisition with max-
imum gradient amplitude of 100 mT.m�1 (consistent
with a max q-value of 63.87 mm�1 or maximum b-value
of 8000 s.mm�2), 11� 11� 11 grid yielding 515 sampling
points AND a d¼ 15 ms; and a “medium resolution” DSI
acquisition with maximum gradient amplitude of
40 mT.m�1 (consistent with a max q-value of 47.69 mm�1

OR maximum b-value of 4000 s.mm�2) with a 7� 7� 7
grid and 123 sampling points AND a d¼ 28 ms. For all
datasets, data were generated with and without zero-
padding and interpolated to 35� 35� 35 and 63�
63� 63 cubes (35). Additionally, to achieve a propagator
that could asymptotically resemble the true underlying
propagator, an acquisition scheme identical to the “state
of the art”, but with a grid size of 63�63� 63 and varying
gradient amplitude in equal steps from 0 to a maximum of
300 mT.m�1 (yielding a max q-value of 102.19 mm�1 or
maximum b-value of 21,000 s.mm�2) was also generated.
In the first configuration, the isotropic case, different dif-
fusivities were simulated, ranging from 1.0�10�3mm2.s�1

to 3.0� 10�3mm2.s�1 in 0.5� 10�3 intervals. In the second
configuration, the single fiber configuration, a single ten-
sor of constant mean diffusivity (36) of 0.7� 10�3mm2.s�1

FIG. 1. Standard DSI analysis. Left: The 3D keyhole Cartesian grid sampling with exclusion of directions in the corners of q-space grid
(2D view presented). Middle: Fourier transform of the diffusion signal and reconstruction of the diffusion propagator. Right: ODF compu-

tation by radial integration of the diffusion propagator.
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was simulated with axial diffusivities of [1.1, 1.3, 1.5, 1.7,

1.9]� 10�3mm2.s�1. For each dataset, the propagator was

estimated (with and without Hanning filtering and the

ODF was derived by radial integration along 10,832 direc-

tions defined on the unit sphere. This number was chosen

to give higher angular resolution and better quality in ODF

visualization than a more traditional lower number of

directions to minimize the likelihood of misattributing

visualization issues as fundamental acquisition or proc-

essing effects. The estimated ODFs for the isotropic com-

ponent were then evaluated along 180 directions around a

single axis, and the amplitude for each direction extracted.

This procedure was repeated for all the three Cartesian

grid axes. Similar analysis was repeated for the single fiber

system where the fiber was rotated from 0� to 180� relative

to the main Z-axis of the DSI grid, and its local maxima

extracted.

ODF Computation as a Band-Pass Filter

In a second experiment, we investigated the effect of

restricting the range of integration of the ODF calculation

as described in Eq. [3] based on the assumption that the

mean squared displacement related to fiber orientations

will be close to typical values of “axial diffusivity” as

measured within single fiber voxels. As shown in Figure

2, a lower bound a and an upper bound b were defined,

both representing distinct physical displacements that can

be chosen specifically according to the biophysical charac-

teristics of the system under investigation (Eq. [4]).

ODFðuÞ ¼
Zb

a

PðruÞr2 dr: [4]

This displacement is given by R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 D tdiff

p
, where D

is the diffusivity of the tissue, and tdiff is the diffusion

time (Fig. 2). By restricting the integration range, we can

then use the ODF calculation as a sort of band-pass filter

to recover information only related to the diffusion char-

acteristics of WM, excluding contribution from gray mat-

ter (GM) and cerebrospinal fluid (CSF)/edema and

improving angular resolution. To test our hypothesis, a

more complex system was simulated with two fibers

crossing at 0�, 15�, 30�, 45�, 60�, 75�, and 90�, modeled

as the sum of two fibers with the same diffusivity profile

of [1.7 0.2 0.2]� 10�3 mm2.s�1 and no diffusional

exchange. The diffusion propagator was calculated with

and without partial volume contamination (with GM and

CSF), only for the “high resolution” DSI scheme, and

again the effects of Zero-padding and Hanning Filtering

were investigated. Additionally only the values above a

threshold of 5% in the propagator were kept, as a mean

to help decrease the contribution of spurious peaks in

the ODF reconstruction. Band-pass filtered ODFs were

generated with different combinations of a and b, varying

the amount of displacement from GM (RGM ) and WM

(RWM ) to be integrated (Fig. 2). These values were chosen

to ensure that most of the GM signal has already decayed

while covering the range over which significant WM sig-

nal remains, with DGM ¼ 0:7 � 10�3mm2:s�1 and DWM

¼ 1:7 � 10�3mm2:s�1 (36,37). To compare the band-

pass filtered ODFs with standard processing, ODFs with-

out any integration restrictions and with min-max nor-

malization were also computed.

Human In Vivo Data

To validate the results of the numerical simulations, DSI

was acquired of a normal adult human subject. To reduce

scan time, coverage was restricted to a region expected to

demonstrate partial volume contamination, namely the

corpus callosum and ventricles. Data acquisition was per-

formed using a 3 Tesla (T) GE MR750 clinical MR scanner

with a maximum gradient strength of 50 mT.m�1 and slew

rate of 200 mT.m�1.ms�1 and a 32-channel head coil.

Images were acquired using a single-shot echo-planar

imaging sequence; d¼ 32 ms, D¼ 55 ms; max q-value of

68.12 mm�1 and b-value of 8000 s.mm�2; echo time of

116.8 ms; repetition time 1700 ms; matrix size¼96� 96;

FIG. 2. Left: The 1D Propagator for specific diffusivities species: GM, WM, and CSF, with 0.7�10�3 mm2.s�1, 1.7�10�3 mm2.s�1 and
3�10�3m2.s�1, respectively, and an example band of the diffusivities of interest. Right: Pictorial representation of band pass filter,
band which is selected based on particular diffusivity values. Only the probabilities present between the two green circles are of interest

for the reconstruction of the ODF (example on the left), for a propagator derived from a 60 degree and a high resolution DSI acquisition,
d¼15 ms, D¼55 ms.
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11 slices; isotropic voxel size 2.5� 2.5� 2.5 mm3; four rep-
etitions of the complete protocol were collected for signal
averaging purposes. For each voxel, q-space was sampled
on Cartesian grid points within a 3D sphere with diameter
of 11, i.e., 11� 11�11 grid, yielding 514 diffusion-
encoding directions. Additionally, 18 b0 images were
acquired interspersed and used for motion correction.
Total acquisition time was approximately 60 min. The
four repetitions were then averaged before propagator and
ODF reconstructions. The reconstruction pipeline was
identical to the one adopted for the second set of simula-
tions, where the presence of Hanning filter and restriction
in the ODF integration ranges was investigated. To investi-
gate the effect of choosing different grid sizes of the Carte-
sian grid two under-sampled datasets with 9� 9� 9 and
7� 7� 7 grid sizes were generated and different integra-
tion ranges were compared.

RESULTS

The rationale for this study and in particular for our first
investigations was not only to explore the stability of
DSI reconstructions accordingly to changes in the bio-
physical system but how those changes are evaluated.
Figure 3 depicts changes in the displacement field of the
propagator as a result of varying the diffusivity of the
simulated isotropic compartment, the applied b-value
and grid size. It is visible from this figure that for lower
b-values and smaller grid sizes, the displacements is not
uniform across the field of view of the propagator, and it
corresponds to a nonperfectly spherical profile. More in
detail, by measuring the amplitude of the ODF, we
observe that, with the exception of the “asymptotic”
case, its value is not constant for all angles, as we should
expect from isotropic diffusion. These effects are more
pronounced for fast diffusivity and decrease when the

FIG. 3. Effect of changing the biophysical system, in an isotropic scenario, and the experimental setup on the amplitude of the ODF. Dif-
ferent isotropic compartments with different diffusivities ranging from 0.5�10�3 mm2.s�1 to 3�10�3 mm2.s�1 were simulated for an
asymptotic, a state of the art, a high DSI and a medium DSI schemes. ODFs were derived from radial integration of the diffusion propa-

gator without any Hanning filtering, and its amplitude measured over 180 different angles around a circumference.

FIG. 4. Effect of changing the biophysical system, in a single fiber scenario, and the experimental setup on the amplitude of the ODF.
Different single fibers with different diffusivities ranging from 1.1�10�3 mm2.s�1 to 2.1�10�3 mm2.s�1 were simulated for an asymp-

totic, a state of the art, a high DSI, and a medium DSI schemes and for 180 different angles. ODFs were derived from radial integration
of the diffusion propagator without any Hanning filtering, and its amplitude measured over 180 different angles around a circumference.
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diffusivity of the system is lower. These results suggest
that with realistic DSI schemes some fast diffusion com-
ponents may not be well characterized and lead to alias-
ing effects. The results reported in this figure display
diffusion propagators generated without Hanning filter-
ing to investigate mainly the effect of different acquisi-
tion schemes rather than the effect of processing. Similar
results were also obtained from data where Hanning fil-
tering was used.

Figure 4 shows similar, but more localized, effects in
the single fiber case. Whereas in the isotropic scenario a
single ODF is evaluated along different angles, here dif-
ferent fibers were simulated for different angles, with the
same biophysical properties, and its amplitude measured
along the maximum direction, for different acquisition
schemes. Again we can see that for progressively lower
b-values the spread of displacements in the propagator is
larger and that directly affects the reconstruction of the
ODF; these effects are once again even more evident for
higher diffusivity values. An example of an ODF and its
associated propagator is displayed for a 15-degree angle
and the simulated acquisition schemes.

The influence of partial volume contaminations and
the effect of changing the processing of diffusion propa-
gator and ODFs reconstruction are shown in Figure 5.

In the first two columns, the propagator was generated
with and without Hanning filter and the ODF recon-
structed without restriction in the integration ranges.

The third and fourth column display ODFs reconstructed
with the band-pass approach, the latter including an
additional threshold on the propagator values as
described in the methods section. Furthermore, the effect
of partial volume contamination with GM and CSF (both
25%) is displayed. It is easily seen that the Hanning fil-
tering reduces the artifacts present in the diffusion prop-
agator at the expense, however, of a lower angular
resolution of the ODF, for all scenarios. The effect of
restricting the integration ranges is important for reduc-
tion of some of the artifacts due to partial volume con-
tamination and also for an increased angular resolution
of the ODF. Additionally, the use of a threshold in the
diffusion propagator appears to be beneficial as ringing
artifacts remaining after the application of the band-pass
are further removed.

Additional simulations were then performed to iden-
tify the best pair of integration ranges to be used and
results are summarized in Figure 6. As comparison, a
min–max normalized ODF computed without restricting
the integration ranges is also shown. The influence of
Hanning filtering in the final results was also investi-
gated and the angular errors (AE) with the ground truth
computed for all ODFs (Tables 1 and 2).

Tables 1 and 2 present a more quantitative analysis of
the improvement in angular resolution from the use of
adequate integration ranges in the ODF reconstruction.
The integration range that offers better angular resolution

FIG. 5. Effect of partial volume contamination and processing steps of the propagator and ODF on a simulated crossing fiber (45 degrees).
Fiber diffusivity of 1.9�10�3 mm2.s�1, and a high resolution DSI scheme, max b-value¼8000 s.mm�2. From left to right, ODFs generated:

with Hanning filtering and full ranges of integration; without Hanning filter and full ranges of integration; without Hanning filter and band-
pass integration approach (a¼2*RGM; b¼2.2*RWM); without Hanning filter, band-pass integration approach (a¼2*RGM; b¼2.2*RWM) and
threshold on the propagator. From top to bottom: WM only; contamination with GM (25%); contamination with CSF (25%).
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by giving a lower angular error, is the one that corre-
sponds to a ¼ 2:5 � RGM and b ¼ 2:5 � RWM , for both the
case with and without Hanning filtering. It is also impor-
tant to note, that when compared with the standard
min–max ODF, the band pass approach was able to
resolve crossings down to 30 degrees, as opposed to 35
degrees, for the non-Hanning scenario, and 40 degrees
instead of 45, for the Hanning configuration.

Figure 7 displays a comparison of different processing
steps in the reconstruction of the ODF, on in vivo data,
in a region where the contamination by partial volume
effects can be observed, using the ranges determined in
the simulations.

Figure 7 clearly shows that the use of min–max ODFs
obtained either with or without Hanning filter, gives rise
to artifactual and regularly structured fiber orientations
in the ventricles (red box) where only CSF is present. By
using the band-pass approach, voxels in CSF regions cor-
rectly display an isotropic profile. At the same time,
crossings in WM regions are better resolved as shown in
the selected region of the brain (top right corner).

Finally, Figure 8 shows how different integration
ranges and grid sizes influence the ODF reconstruction
for the same brain region as in Figure 7. As expected by
moving the integration ranges to higher diffusivity values
we observe an increase of angular resolution in the
recovered ODF. However, for the smaller sampling
schemes the stability of the estimated ODF is reduced

precluding a complete recovery of the underlying WM

organization.

DISCUSSION

Fast Diffusion Artifacts

The main objective of this study was to investigate how

stable DSI reconstructions are, when realistic changes

occur in the biophysical system. We simulated isotropic,

single fiber scenarios, and crossing fiber configurations

varying the diffusivity of the system and also the DSI

acquisition schemes used to measure it. The expected

profile for a diffusion propagator within a fully isotropic

voxel is a sphere, and that was the case for the asymptotic

acquisition scheme, where the amplitude of the ODF is

constant for all isotropic diffusivities tested (Fig. 3). How-

ever, for the “state of the art” (i.e., b¼21,000 s.mm�2) and

“high resolution” (i.e., b¼8000 s.mm�2) DSI acquisition

schemes, the amplitude of the ODF is not constant and

changes along different directions, particularly for higher

diffusivity values. This effect is further amplified and can

be seen at all diffusivities, for the “medium resolution”

(i.e., b¼4000 s.mm�2) acquisition scheme. This effect

occurs on the faces of the sampled Cartesian grid, where

fast diffusion components go beyond the sampled field of

view of the propagator inducing aliasing. The conse-

quence is an apparent higher probability displacement

along the main axes of the Cartesian grid. This has an

FIG. 6. Comparison between standard ODF computation with min–max normalization (first column) to the “band pass” processing in
which ODFs are computed with different integration ranges: A - 1.0�RGM to 2.0�RWM; B - 1.5�RGM to 2.0�RWM; C - 2.0�RGM to

2.0�RWM; D - 2.5�RGM to 2.0�RWM; E - 2.5�RGM to 2.5�RWM.

Table 1

Angular Error between Simulated Ground Truth and Reconstructed
ODF Crossing Angle, for Different Integration Ranges and Min–

Max ODFs, Generated with Hanning

Hanning

A B C D E Full

30�

45� 6.40 5.65

60� 10.65 9.60 7.13 4.21 2.03 2.25
75� 4.87 3.68 1.98 0.56 0.44 1.71

90� 0.00 0.00 0.00 0.00 0.00 0.00

Table 2

Angular Error between Simulated Ground Truth and Reconstructed
ODF Crossing Angle, for Different Integration Ranges and Min–

Max ODFs, Generated without Hanning

No Hanning

A B C D E Full

30� 4.64
45� 5.52 4.89 2.35 1.02 1.50 0.99

60� 2.70 0.68 1.13 1.79 1.07 0.89
75� 0.61 0.22 0.81 0.76 0.24 0.73

90� 0.00 0.00 0.00 0.00 0.00 0.00
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effect on the computation of the final ODF profile and can

get further amplified when using min–max normalization.

Higher diffusivities lead to a more pronounced effect,

which may, therefore, be particularly problematic in vox-

els containing CSF such as the one displayed in the in

vivo data in Figure 7 or edema, in pathological tissue.
Even though it is possible to mask out CSF or a lesion

for tractography purposes, the presence of voxels with

partial volume contaminations may still lead to inconsis-

tent reconstructions (38,39). The limit at which such ali-

asing is detected depends on the acquisition parameters

and to avoid artifacts, it is necessary to apply a maxi-

mum q-value corresponding at least to twice the maxi-

mum displacement present in the diffusion propagator.

This gives already good indication in terms of the

required sampling density, which must be sufficient to

explore that maximum displacement and should be used

as basis for the optimization of DSI acquisition schemes

(40,41). This becomes particularly relevant as new hard-

ware capable of achieving higher performances are avail-

able today (10,42).

When we extended this analysis from the isotropic to

a single fiber scenario, we found similar effects for all

acquisition schemes. Again, only for the asymptotic sce-

nario, the maximum amplitude of the ODF is constant

for all diffusivities (Figure 4, left column). We can also

see that by only reducing the sampling density from the

asymptotic it again leads to significant differences in the

amplitude of the ODF. For the “medium” and “high reso-

lution” acquisition schemes, together with changes in

the ODF amplitude, additional artifacts not present in

the isotropic scenario were also visible, such as the pres-

ence of artificial peaks. We further noticed that for the

latter two DSI schemes, the presented ODF profile was

also asymmetric, which might be attributed to the effect

of the Cartesian sampling and residual aliasing effects

(15,43) that add asymmetric features on the final propa-

gator. When we considered the application of Hanning

filtering in the ODF reconstruction, some of these arti-

facts were reduced at the expense of a severe reduction

of angular resolution of the ODF. This was even more

evident for a crossing fiber scenario, as depicted in a

FIG. 7. ODF field of a brain region including the corpus callosum and CSF calculated with/without Hanning filtering before diffusion
propagator estimation and for full-range ODF and bandpass versions. Full-range ODFs were applied min-max normalization for

improved angular resolution.
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simulation (45 degree crossing) in Figure 5. Here the use

of the band-pass approach to generate the ODF also con-

tributed to further remove some of these artifacts.

Finally, the implementation of a threshold in the propa-

gator to exclude low values and ringing effects before

ODF reconstruction, also removed remaining spurious

peaks present (44).

Selecting the Right Diffusion Ranges

In the second part of the study, we explored the effect

of restricting the integration ranges to specifically

probe “axial like” diffusivity profiles (Fig. 2) and in an

attempt to minimize some of the problems described.

Our method relies on the restriction of the radial inte-

gration of the propagator to diffusion ranges that are

within expected biophysical meaningful displacements.

As it can be seen in Figure 5, this not only allows

removing some artifacts from partial volume contami-

nations but also provides a better angular resolution of

the ODF. To further explore the gain in angular resolu-

tion, we generated ODFs with different integration bands

and compared them with ODFs generated using tradi-

tional min–max normalization, with and without Han-

ning filtering, for pure WM crossings. Figure 6 displays

the result of changing both the lower and upper bounds

of integration and the best heuristically estimated range

appears to be from a 5 2:5 � rGM to b 5 2:5 � rWM . More-

over, for this specific range and for the case where no

Hanning filtering is applied (Table 2), the recovered
angular resolution is sufficient to resolve a 30-degree
crossing, attaining similar performance of model-based
approaches (30,36).

This range was further evaluated in real data, and
demonstrated an increase of angular resolution of the
ODF even with the use of Hanning filtering (Fig. 7). In
the top row of Figure 7, we can clearly see the aliasing
effect of fast diffusion like components in combination
with min–max normalization, as regularly structured
crossing fibers can be detected in the ventricles, where
an isotropic diffusion profile is expected. On the bottom
row, the results of the ODF computed with biophysical
integration ranges are shown and these artifacts are
removed, even in the absence of Hanning filtering. This
can be further appreciated in Figure 7, where a WM region
is highlighted and shows higher angular resolution for sin-
gle and crossing fibers, while no directional information is
found in voxels containing CSF, which actually display a
spherical profile. To better appreciate the effect of apply-
ing the band-pass approach, real data processed with dif-
ferent integration ranges are also displayed in Figure 8.
Additionally, those ranges were applied on two under-
sampled versions of the 11� 11�11 grid dataset. The
under-sampled datasets showed smoother profiles and
decreased angular resolution. Even when using the band
pass approach it was not possible to significantly improve
resolution without losing the underlying WM structural
organization.

FIG. 8. Effect of different integration ranges and grid sizes on the reconstruction of the final ODF. For grid sizes of 11, 9, and 7 points,

four different integration ranges were computed and displayed: 1.0�RGM to 2.0�RWM; 1.5�RGM to 2.0�RWM; 2.0�RGM to
2.2�RWM; and 2.5�RGM to 2.0�RWM.

Diffusion and Aliasing Effects in DSI 1845



Finally, it should be noted that band pass approach

can also be applied to other model free diffusion techni-

ques, preserving the quantitative nature of the ODF and,

therefore, enabling comparisons that are not possible

when min–max normalization is used (42). Future work

will focus on the optimization of the integration range

used.

CONCLUSIONS

Current diffusion imaging studies are limited by hard-

ware and time constraints, which hinder the use of oth-

erwise very promising techniques in clinical settings

(10,45). In the current study, we have demonstrated the

limitations affecting most of the current implementations

of DSI. While advances in hardware are likely to help

minimize many of the current problems such as low

SNR, long scan times, and motion artifacts, other issues

are likely to remain; in particular we have identified

that, for typical acquisition parameters, fast diffusion

components are not well characterized and can lead to

aliasing on the diffusion propagator. As a result of this,

in pathological tissue, or in voxels contaminated with

CSF, the processing methods normally used with DSI

may lead to the reconstruction of artifactual fibers when

the resulting ODFs are used for tractography.
To tackle this issue, we have introduced a new way of

computing the ODF, in a band-pass manner, which relies

on restricting the integration ranges of the propagator

based on the expected biophysical displacement of water

molecules in the tissue of interest. We have shown that,

if the appropriate ranges are chosen, the angular resolu-

tion that we obtain for the ODF is comparable (or even

superior) to standard ODF processing, and our method

has the additional advantage of retaining a quantitative

nature of the ODF and can be generalized to other

model-free diffusion imaging techniques.
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