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Deformable Anatomic Templates Embed Knowledge Into
Patient’s Brain Images: Part 1. Construction and Display
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Objective: This paper describes the methods used to create annotated
deformable anatomic templates (DATs) and display them in a patient’s
axial 2-dimensional and reformatted volume brain images.

Methods: A senior neuroradiologist annotated and manually seg-
mented 1185 color-coded structures on axial magnetic resonance images
of a normal template brain using domain knowledge from multiple
medical specialties. Besides the visible structures, detailed pathways for
vision, speech, cognition, and movement were charted. This was done
by systematically joining visible anatomic anchor points and selecting
the best fit based on comparisons with cadaver dissections and the
constraints defined on the companion 2-dimensional images.

Results: The DAT is commercially available for use on a picture ar-
chiving and communication system or as a standalone workstation.
Conclusions: The DAT can quickly embed extensive, clinically useful
functional neuroanatomic knowledge into the patient’s brain images.
Besides labeling visible structures, DAT displays clinically important,
previously uncharted subdivisions of the fiber tracts.
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eformable anatomic templates (DATSs) have been developed

for the brain, head and neck, chest, abdomen, and pelvis.
The motivation for the DAT project is to quickly enhance and
extend the clinician’s personal fund of knowledge. This publi-
cation introduces the DAT approach by describing construction
of the brain module. The labeling of visible structures in the
DAT was straightforward and not controversial, but the DAT
contains additional structures which are unique. To enter these
structures, the anatomically accurate brain template was used as
a framework for a knowledge-based strategy, which establishes
reliable anatomic anchor points and systematically manipulates
the locations of the intervening connections until they form a
pattern in the volume reconstruction. This pattern can be vali-
dated by comparison with dissected specimens and superimpo-
sition on clinical cases.
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This report is accompanied by another paper that focuses
on confirming the DAT’s location of the origin of the corti-
cospinal tract using functional magnetic resonance imaging of
the hand. Additional validation papers on the visual system and
the language areas are in preparation. The utility of DAT overlays
in brains with pathology will be addressed in papers that report
surgical results.

MATERIALS AND METHODS

Axial MR Image Acquisition and Resolution

The framework of the DAT was constructed from magnetic
resonance (MR) images of a 57-year-old healthy right-handed
white woman. The following parameters were used: a T2 fast-
relaxation fast-spin echo sequence (TR = 5600 milliseconds,
TE = 100 milliseconds) of 1 number of excitations, matrix of
384 x 224, field of view of 25 cm, and echo train length of 8.
The images were obtained on a 1.5-T Signa GE scanner at 2.5
mm thickness with 1.5-mm gaps in the axial plane using the
acanthiomeatal reference line.! In the authors’ experience, this
virtual plane through the nasal spine (the acanthion) and the
external auditory meati is the most comfortable neutral head
position and reproduces the axial plane used in most clinical
diagnostic MR imaging. The reader should note that this dis-
tinguishes the DAT from other atlases that use one of the fol-
lowing: (1) the bicommissural line between the anterior and
posterior commissures, which parallels the canthomeatal plane
between the angle of the eyelids (the canthus) and the external
auditory canal or (2) Reid base line, which is defined by joining
the external auditory meatus and the lower border of the orbit.
The resolution of the axial MR images matched that seen in
myelin stained brain specimens. Unlike formalin-fixed brain spe-
cimens, the white-gray matter relationships were not distorted by
uneven shrinkage artifacts.

Alignment

The methodology for embedding the DAT onto axial ima-
ges containing pathology is straightforward and requires 5 to
10 minutes of a technician’s time to process any axial exami-
nation. If the axial images have been obtained in the acantho-
meatal line, minor reslicing of the patient data is needed. The
DAT is manually deformed to fit the patient’s brain using
an affine (linear) transformation. This manipulation alters the
DAT to compensate for the patient’s head rotation, head tilt,
and variations in chin position. It also resizes the DAT to fit
the vertical and horizontal dimensions of the patient’s brain. The
surface of the cerebral hemisphere is used to size the DAT.
The ventricles are not used as a landmark because of wide in-
dividual variation.

The landmark for checking the alignment of the DAT in
the patient’s cerebral hemisphere is the central sulcus. This
sulcus was chosen because it is the most constant landmark on
the hemispheric convexity. In 92% of individuals, it descends
without interruption from posterior to anterior with a 7-degree
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forward slant. It has a depth of 1.7 cm and it is devoid of real side
branches. However, shallow anastomotic furrows are present on
the precentral and postcentral gyri. This sulcus is recognized
by its distinctive adjacent interlocking vertical gyri, which have
2 sharp curves (the superior genu and the inferior genu).>

Strategies for Segmentation

The 55 axial brain images were segmented into a frame-
work which registered any brain structure defined on the
2-dimensional (2D) volume-rendered images. The volume DAT
image could be sectioned as often as needed to confirm a struc-
ture’s location. These virtual dissections could be done in the
standard axial, coronal, or parasagittal planes or by a confocal
technique, which removed successively deeper curvilinear planes
and provided superior views of surface gyri.

A senior neuroradiologist (LAH) with anatomic expertise
and more than 30 years of clinical experience manually seg-
mented 1185 color-coded structures on 55 axial T2-weighted
1.5-T MR images of a template brain using domain knowledge.
All structures defined on 2D axial images could be reviewed
on volume-rendered images to check the accuracy of placement.

Strategies for Segmenting Visible Structures

Labeling of the ventricles, deep gray matter, and surface
gyral/sulcal patterns was performed on 2D templates and trans-
lated into volume images. Gyral and sulcal patterns were con-
structed (by LAH) using the traditional method of matching the
displayed surface anatomy of the gyri and sulci with authoritative
anatomic texts.> 2% Variations in sulcal patterns and depths were
annotated in the textual information that was attached to each
named item in the DAT.

Strategies for Segmenting Controversial Structures
Some important structures are variably defined in the lit-

erature. An example is the occipital lobe. In general, it is the

pyramid-shaped medial part of the posterior part of the cerebral

hemisphere, but there are no reliable anatomic boundaries. Anat-
omists commonly define the occipital lobe as that part of the
hemisphere that lies dorsal to an arbitrary line drawn from the
parietooccipital fissure (above) to the preoccipital notch (below).
This convention creates confusion because it places the anterior
part of the so-called lateral occipital gyri in the temporal lobe, and
because the preoccipital notch is not a radiographic landmark.
The DAT defines the boundary of the occipital lobe to include all
of the lateral occipital gyri but provides text explaining the alter-
nate boundary. Although this may seem to be a minor point, it
becomes important in describing the functional contents of the
occipital lobe.

Strategies for Segmenting Structures
Not Visible on Clinical Imaging

Structures that are not visible on clinical MR were extrapo-
lated within the confines of the anatomically correct framework.
Each pathway was reconstructed using its anatomic anchor points
and systematically varying the connections. The best fit was
judged by comparing the volume representation of the pathway
with authoritative anatomic dissections and diffusion tensor im-
aging (DTI) and by checking the reasonableness of the fit on
the 2D images. Pathway placement also took into account well-
described relationships with adjacent visible structures. Patterns
were validated by comparison with dissected specimens and su-
perimposition on DTI atlases.>*>° Clinical cases drawn from
carefully studied patients recruited from neurosurgical and neu-
rological colleagues were also used. Further fine tuning was
provided by the use of intraoperative DTI tract generation and
intraoperative stimulation.

An example of the complex pathway of the visual radiations
is shown in Figure 1. This pathway was reconstructed by using
12 retinal locations for each eye (two 0- to 10-degree macular
fibers for the superior and inferior retina, four 10- to 30-degree
and four 30- to 60-degree fibers for the 4 peripheral retinal
quadrants, and two 60- to 90-degree fibers for the nasal side of

FIGURE 1. Construction of the visual pathways. A, Sample color-coded DAT source image shows parts of many of the 24 divisions of
the retinal fibers, which were painstakingly hand-segmented into the 2D template to create the visual pathway which matched anatomic
dissections.'® B, Reconstruction of the visual pathway viewed from above with the lateral ventricular system (blue) included for
orientation. C, In vivo 3T DTI of Meyer loop (yellow), the central bundle (green), and the dorsal bundle (blue) (used with permission

from Hofer et al'"”

). D-F, Serial oblique axial views of volume-rendered DAT show the color-coded reconstruction of the manually

segmented data shows the superior visual radiations (dorsal bundle) wrapping around the atrium of the lateral ventricle in all 3 images.
E, The fibers of the inferior visual radiations (Meyer loop), which cover the temporal horn, have been added to the volume display.
F, The lowest axial section shows the termination of the central bundle (macular fibers in red) in the occipital pole.
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FIGURE 2. Screen captures of Anatom-e software taken during analysis of a glial tumor in the supramarginal gyrus. A, The patient’s axial
scan has been aligned with the DAT (blue outlines). A region of interest has been manually segmented around the tumor, which is shown
in solid blue. This has activated a list of structures, each of which is extensively annotated. At this step in the process, the arcuate tract
has been selected and its location is shown in red on the patient’s axial image. Its position in the upper posterior quadrant of the tumor was
validated at surgery. Additional information was provided to guide the surgeon: (B and C) show the relationship of the tumor to the
overlying supramarginal gyrus; (D) shows a probability map of the likelihood of encountering essential language cortex (modified with
permission from Ojemann et al*®); (E) shows the relationship of the tumor to the multicolored corticospinal and corticobulbar tracts;

and (F) shows the relationship of the motor tracts and the arcuate to the tumor in an oblique axial view.

the peripheral retinal quadrants). Each of the 24 locations was
color-coded and traced from the retina to the appropriate part of
the calcarine cortex. The anatomic results were compared to
published DTI visual tracts.>*-”

Strategies for Segmenting
Variable Structures

Part of the problem of individual variations was resolved
by embedding the DAT with probability maps. Figure 2D shows
the sites of essential language functions in the left dominant
hemisphere, determined by intraoperative cortical stimulation
of awake patients.*® A similar map is provided for patients in
whom language is located in the right hemisphere.>* To account
for variations in vascular distributions, the vessel territory and
not an arteriogram was used. For example, the area occupied by
a cortical artery on 100 arteriograms was plotted to show the
range of normal positions.*® Variations in the arterial origins
and anastomoses were included in the text provided for each ar-
tery. Variations in the venous sinus drainage were illustrated by
showing the maximum territory for each sinus as the sum of its
independent small regional veins. Overlap between the maximum
sinus territories indicates the location of regional vein(s) that can
drain to 1 or more sinuses. For example, the superficial sylvian
vein drains to any 1 of 4 sinuses (basal vein to the straight sinus,
paracavernous vein to the pterygoid sinus, directly to the sphe-
noparietal sinus, or directly to the sphenopetrosal sinus). More-
over, the territory of the superficial sylvian vein can be replaced
by either of 2 veins (the vein of Trolard to the superior sagittal
sinus or the vein of Labbé to the lateral sinus). In the DAT,
the superior sylvian territory is part of the maximum venous
territory of each of the 6 sinuses to which it can drain. When more
than one of these sinus territories are selected, the overlap is an
intuitive visual display of the variable connections of the super-
ficial sylvian vein.*!

Strategies Employed for Labeling

Textual information for each of the 1185 color-coded struc-
tures was developed by the senior neuroradiologist (LAH). The
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information crossed domains. The anatomic literature primarily
supplied synonyms, functions, variations, and connections®2;
whereas the radiographic literature provided imaging landmarks,
differential diagnosis, arterial supply, and venous drainage.**7¢
Information on clinical syndromes caused by damage to a struc-
ture was drawn from the anatomy, neurology, and ophthalmology
literature.””"'7 The pathology literature provided a framework
for organizing the brain into vulnerable areas. Examples include
the site-specific watershed zones or site-specific areas vulnera-
ble to toxins such as alcohol, carbon monoxide, or Wilson dis-
ease.!'>!13 The size of each structure was recorded, when it
was available. Individual variations were also noted in the text. A
list of related items accompanies each structure entry, which
allows the user to quickly access information related to the de-
scriptive text.

Strategies for Data Retrieval

Any item in the program can be located by a word search,
which produces 4 features. The first is textual information. The
second is an option to highlight the structure on every section
in the 2D and volume data sets. The third option is to highlight all
the related items that have been linked to the term. For example,
the occipital lobe would not only highlight the lobe but also show
all of the gyri within it and describe alternative definitions. The
fourth option is to transport the structure name to PubMed and
call forth a literature search of the term.

In addition to a standard word search, the knowledge
embedded in the DAT can be retrieved by defining a region
of interest on the 2D axial section; all of the structures in
and around this area are presented in 1 of 2 lists, anatomic or
clinical (Fig. 2A). The terms in the list have all of the options
described in the preceding section on labeling.

RESULTS
Two versions of the DAT are commercially available
(Anatom-e, 2047 University Blvd, Houston, TX 77030) for
clinical, surgical, educational, and research projects. The first
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version is a knowledge-assisted reporting (KAR) software ap-
plication, which instantly provides the annotated location of all
structures within a region of interest. It is designed for use in
tandem with a picture archiving and communication system
(PACS) imaging workstation. The second version is a standalone
workstation, which embeds the DAT into the patient’s volume-
rendered brain images. The process of data display and retrieval
for each system is described separately.

DAT Display and Retrieval for the PACS
Workstation

The simplest version of DAT is the KAR software appli-
cation, which mounts the DAT on the PACS toolbar. In this
application, the templates are not deformed or embedded in the
patient images. The templates serve as a resource which the user
can quickly scroll through, find the axial sections that contain
the area of interest, and circle them. The program instantly
provides the outline of all structures within and around the re-
gion of interest. This list can be tailored to items of interest and
exported to the radiology report. The location of any one of the
listed structures can be highlighted in all of the relevant sections.
In addition, encyclopedic text concerning the function, clinical
deficits, anatomic location, blood supply, venous drainage, and
proximal and distal connections of each structure is provided.

DAT Display and Retrieval for the Standalone
Workstation

The second version of DAT is a workstation-based program
which aligns and volume-renders the patient scans before em-
bedding the annotated structures within them. An information
panel allows the user to select relevant structures for display
within the patient images. The KAR feature (described previ-
ously) is available in this program.

DISCUSSION

A recent review article focused on the limitations of brain
atlases.''* Major objections include issues of individual var-
iations and brain plasticity. It is worth noting that, for practi-
cal clinical purposes, these are not problems. Studies using
intraoperative stimulation have shown that the major clinical-
ly significant areas do not have individual variations or brain
plasticity. These important and consistent structures cannot
be surgically resected without producing a permanent neuro-
logical deficit. Together they form the “minimum common
brain,” which consists of 4 tracts (visual, corticospinal, arcu-
ate, and inferior fronto-occipital) and 11 cortical areas (both
calcarine gyri, both precentral and postcentral gyri, the left
superior temporal gyrus, both angular gyri, and both supra-
marginal gyri).

Another limitation of brain atlases is their inability to re-
produce the distortions introduced by a mass. Currently, the
DAT does not have the ability to focally warp to match the
structural deformities created by masses. In cases with signifi-
cant mass effect, however, DAT provides labeled normal struc-
tures on the opposite side, which can be extrapolated to the
distorted areas. In other cases, the high-resolution, multiplanar
volume-rendered image capability displays the distorted struc-
tures to better advantage than traditional sectional images.

In summary, the brain DAT resource was constructed using
domain knowledge across anatomic, radiologic, and clinical spe-
cialties. The position of structures not visible on clinical imag-
ing was inferred by connecting known anatomic landmarks and
fitting the tract on 2D and volume-rendered images. The DAT

© 2012 Lippincott Williams & Wilkins

is designed to quickly extend the clinician’s personal fund of
knowledge by embedding manually segmented, annotated func-
tional anatomic knowledge templates into volume-rendered ima-
ges of the patient’s brain.
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